谈及AI时常听到的“神经网络”和“深度学习”到底是什么意思?
这两种方法既有相同点又有不同点。
AI(Artificial Intelligence),全称叫人工智能,是一种基于计算机的多学科交叉的新兴科学技术。它的作用跟我们想象中的一样,能够代替人类做很多繁重的工作。
而神经网络和深度学习,则是实现人工智能的方式,未来可能用神经网络实现我们想象中的人工智能,也可能以深度学习的方式实现。也就是说,人工智能是目标,而神经网络和深度学习是方法。
那神经网络和深度学习有什么区别呢,相信你已经略知一二,他俩是两种不同的方法。这两种方法既有相同点又有不同点。
人工神经网络是生物学里根据人的大脑里神经元的运转方式而抽象总结出来的一种方法,其特点是通过不断迭代、负反馈的方式求最佳解的过程。
深度学习的概念正是源于神经网络,在神经网络的基础上其含有多个隐含层和多个感知器。深度学习像一种贪心算法,追求从最低层找到一个事物的多种表达方式,比如一幅图像,最简单直接的形式是表达成像素点的形式。同样,图像也可以表达为各种轮廓的边构成,由颜色构成,梯度构成或者更高一层次的元素如:四肢、棱、柱子等构成。在这个基础上对事物进行分类辨别。
从广义上讲,深度学习也是神经网络的一种。传统的神经网络只有输入层、隐含层、输出层。但深度学习则是在多层神经网络的基础上还有特征学习部分,这就是我上面讲的对信息的分级处理。
最后,记得关注微信公众号:镁客网(im2maker),更多干货在等你!
硬科技产业媒体
关注技术驱动创新